Extruded Concrete Lining Method

Constructing high-quality linings / Providing high cost performance

Characteristics

1. Construction of high-quality linings
 Denser concrete with greater strength enables the construction of high-quality concrete linings.

2. Linings with a broad range of applications
 This method enables rational construction of concrete linings according to the site condition such as reinforced concrete, nonreinforced concrete, fiber-reinforced concrete, steel-reinforced concrete and prestressed concrete linings.

3. Superiority of working conditions in tunnel
 This method can be applied to mountainous tunneling, and as working conditions in the tunnel is superior compared to the conventional tunneling method, cost for ventilation facilities can be minimized.

4. Minimization of ground settlement
 Lining concrete is extruded, as the tunnel advances, by the pressure force corresponding to combined water and earth pressures. Thus, the deformation of the ground can be minimized.

4. Saving of construction time and cost
 The type of lining can be selected according to the geological condition, and secondary lining can be eliminated depending on the use of the tunnel. Construction cost therefore can be reduced and construction period can be shortened.

Mechanism of tunnel driving

Construction flows by lining reinforcement method

1. When reinforced concrete is used (cyclic concrete placement)

2. When nonreinforced concrete is used (continuous concrete placement)

Applications to actual tunneling

▲ Construction of the second Shinano-gawa water tunnel
Diameter: 8.40 m
Construction length: 3.100 m
Major soil type: Sandstone and siltstone
Use: Waterway
Depth of tunnel: 2.0m to 80.0m

▲ Construction of the east side of the Akima Tunnel on the Hokuriku Shinkansen railway line
Cross section: 10.70 m wide and 9.92 m high
Construction length: 3.805 m
Major soil type: Tuff
Use: Railway
Depth of tunnel: Maximum 220.0m

▲ Konan shield tunneling
Diameter: 6.60 m
Construction length: 1,860 m
Major soil type: Diluvial gravel layer
Use: Utility conduit
Depth of tunnel: 11.4m to 17.0m

▲ Main civil engineering work as part of the construction of new Hidaka power plant
Diameter: 3.99 m
Construction length: 6,082 m
Major soil type: Lava and mudstone
Use: Floodway
Depth of tunnel: Maximum 190.0m